Combinatorial synthesis of heteroepitaxial multi-cationic thin films by pulsed laser deposition coupled with in situ, chemical and structural characterization


  • Hanak, JJ The concept of multiple samples in materials research: synthesis, compositional analysis, and testing of entire multicomponent systems. J. Mater. Science. 5964–971 (1970).

    ADS
    CASE
    Item

    Google Scholar

  • Xiang, X.-D. et al. A combinatorial approach to materials discovery. Science 2681738–1740 (1995).

    ADS
    CASE
    Item

    Google Scholar

  • Koinuma, H. & Takeuchi, I. Solid-state combinatorial chemistry of inorganic materials. Nat. Mater. 3429 (2004).

    ADS
    CASE
    Item

    Google Scholar

  • Mao, SS & Burrows, PE Combinatorial screening of thin-film materials: an overview. J. Materiomics 185 (2015).

    Item

    Google Scholar

  • Music, D et al. Plasma-surface correlative model for metastable Cr-Al-N: formation of Frenkel pairs and influence of stress state on elastic properties. J.Appl. Phys. 121215108 (2017).

    ADS
    Item

    Google Scholar

  • Chang, KS, Aronova, M., Famodu, O. & Takeuchi, I. Multimode quantitative scanning microwave microscopy of in situ cultured epitaxy (text{ Ba}_{1x}text{ Sr}_xtext{ TiO}_3) the composition spreads. Appl. Phys. Lett. 794411 (2001).

    ADS
    CASE
    Item

    Google Scholar

  • Takeuchi, I., Yang, W., Chang, K.-S., Aronova, MA, and Venkatesan, T. Monolithic multichannel ultraviolet detector arrays and continuous phase evolution in (text{ Mg}_xtext{ Zn}_{1-x}text{ O }) the composition spreads. J.Appl. Phys. 947336 (2003).

    ADS
    CASE
    Item

    Google Scholar

  • Suram, Sask. et al. Combinatorial mapping of the composition of thin films using three-dimensional deposition profiles. Rev. Science. Instrument. 86033904 (2015).

    ADS
    Item

    Google Scholar

  • Hamann, S., Ehmann, M., Thienhaus, S., Savan, A. & Ludwig, A. Micro-hot plates for high throughput thin film processing and in situ phase transformation characterization. Senses. Actuators, A 147576–582 (2008).

    CASE
    Item

    Google Scholar

  • Jain, A. et al. Comment: The Materials Project: A materials genome approach to accelerating materials innovation. APL Master. 1011002 (2013).

    ADS
    Item

    Google Scholar

  • Saal, JE, Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD ). OJM 651501-1509 (2013).

    CASE
    Item

    Google Scholar

  • Kirklin, S., Saal, JE, Meredig, B., Thompson, A., Doak, JW, Aykol, M., Rühl, S. & Wolverton, C. DFT formation energies. NPJ calculation. Mater. 115010 (2015).

  • Agrawala, A. & Choudhary, A. Perspective: Materials Computing and Big Data: Realizing the Fourth Paradigm of Science in Materials Science. APL Master. 4053208 (2016).

    ADS
    Item

    Google Scholar

  • Schleder, GR, Padilha, ACM, Acosta, CM, Costa, M. & Fazzio, A. From DFT to machine learning: recent approaches in materials science – a review. J. Phys. : Mater. 2032001 (2019).

    CASE

    Google Scholar

  • Alberi, K. et al. The 2019 Materials by Design Roadmap. J.Phys. Appl. Phys. 52013001 (2019).

    ADS
    Item

    Google Scholar

  • Saenger, KL Pulsed laser deposition of thin layers (eds. Chrisey, DB & Hubler, GK) 199–227 (Wiley, 1994).

  • Sun, XY et al. Pulsed Laser Combinatorial Deposition of Magnetics and Magneto-optics (text{ Sr }(text{ Ga}_xtext{ Ti}_ytext{ Fe}_{0.34-0.40})text{ O}_{3-delta }) Perovskite films. ACS Comb. Science. 16640–646 (2014).

    CASE
    Item

    Google Scholar

  • Keller, DA et al. Use of lateral inhomogeneity by pulsed laser deposition as a tool in combinatorial materials science. ACS Comb. Science. 17209–216 (2015).

    CASE
    Item

    Google Scholar

  • Christen, HM, Silliman, DD & Harshavardhan, KS Continuous compositional spreading technique based on pulsed laser deposition and applied to epitaxial film growth. Rev. Science. Instrument. 722673–2677 (2001).

    ADS
    CASE
    Item

    Google Scholar

  • Imada, M., Fujimori, A. & Tokura, Y. Metal-insulator transitions. Rev. mod. Phys. 701039 (1998).

    ADS
    CASE
    Item

    Google Scholar

  • Keimer, B., Kivelson, SA, Norman, MR, Uchida, S. & Zaanen, J. From quantum matter to high temperature superconductivity in copper oxides. Nature 518179 (2015).

    ADS
    CASE
    Item

    Google Scholar

  • Butch, NP, Jin, K., Kirshenbaum, K., Greene, RL, and Paglione, J. Quantum critical scaling at the edge of Fermi liquid stability in a cuprate superconductor. PNAS 1098440 (2012).

    ADS
    CASE
    Item

    Google Scholar

  • Takagi, H. & Hwang, HY An emerging phase change for electronics. Science 3271601 (2010).

    ADS
    CASE
    Item

    Google Scholar

  • Mannhart, J. & Schlom, DG Oxide interfaces – an opportunity for electronics. Science 3271607 (2010).

    ADS
    CASE
    Item

    Google Scholar

  • Li, YJ, Savan, A., Kostka, A., Stein, HS & Ludwig, A. Atomic-scale accelerated exploration of phase evolution in compositionally complex materials. Mater. horiz. 586 (2018).

    CASE
    Item

    Google Scholar

  • Othani, M. et al. High-throughput X-ray diffractometer for combinatorial epitaxial thin films. MRS online procedure. Lib. 70038. https://doi.org/10.1557/PROC-700-S3.8 (2001).

    Item

    Google Scholar

  • Ohnishi, T. et al. Parallel integration and characterization of nanoscale epitaxial networks by simultaneous molecular layer epitaxy and diffractometry. Appl. Phys. Lett. 79536 (2001).

    ADS
    CASE
    Item

    Google Scholar

  • Him, G et al. Combinatorial laser molecular beam epitaxy system integrated with specialized low temperature scanning tunneling microscopy. Rev. Science. Instrument. 91013904 (2020).

    ADS
    CASE
    Item

    Google Scholar

  • Strikovsky, M., Kim, J. & Kolagani, SH A dynamic X-ray spectrometry method for determining the stoichiometry of thin films during growth. Appl. Phys. Lett. 112233102 (2018).

    ADS
    Item

    Google Scholar

  • Kim, J. et al. In situ compositional mapping of libraries of combinatorial materials by low-angle scanning X-ray spectroscopy. J.Vac. Science. Technol., A 39033413 (2021).

    CASE
    Item

    Google Scholar

  • Mayer, M. SIMNRA User Guide (IPP Report 9/113) (Max-Planck-Institut für Plasmaphysik, Garching, Germany, 1997).

    Google Scholar

  • Björck, M. & Andersson, G. J.Appl. Christ. 401174–1178 (2007).

    Item

    Google Scholar

  • Previous Nanoscale Alumina Sales Market Size 2022-2029
    Next HIV DNA circularizes to circumvent CRISPR-based treatments